Daniell Integral - Definition of The Daniell Integral

Definition of The Daniell Integral

We can then proceed to define a larger class of functions, based on our chosen elementary functions, the class, which is the family of all functions that are the limit of a nondecreasing sequence of elementary functions almost everywhere, such that the set of integrals is bounded. The integral of a function in is defined as:

It can be shown that this definition of the integral is well-defined, i.e. it does not depend on the choice of sequence .

However, the class is in general not closed under subtraction and scalar multiplication by negative numbers, but we can further extend it by defining a wider class of functions such that every function can be represented on a set of full measure as the difference, for some functions and in the class . Then the integral of a function can be defined as:

Again, it may be shown that this integral is well-defined, i.e. it does not depend on the decomposition of into and . This is the final construction of the Daniell integral.

Read more about this topic:  Daniell Integral

Famous quotes containing the words definition of, definition and/or integral:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.
    Henry David Thoreau (1817–1862)