Cut Locus (Riemannian Manifold) - Definition

Definition

Fix a point in a complete Riemannian manifold, and consider the tangent space . It is a standard result that for sufficiently small in, the curve defined by the Riemannian exponential map, for belonging to the interval is a minimizing geodesic, and is the unique minimizing geodesic connecting the two endpoints. Here denotes the exponential map from . The cut locus of in the tangent space is defined to be the set of all vectors in such that is a minimizing geodesic for but fails to be minimizing for for each . The cut locus of in is defined to be image of the cut locus of in the tangent space under the exponential map at . Thus, we may interpret the cut locus of in as the points in the manifold where the geodesics starting at stop being minimizing.

The least distance from p to the cut locus is the injectivity radius at p. On the open ball of this radius, the exponential map at p is a diffeomorphism from the tangent space to the manifold, and this is the largest such radius. The global injectivity radius is defined to be the infimum of the injectivity radius at p, over all points of the manifold.

Read more about this topic:  Cut Locus (Riemannian Manifold)

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)