Definition
The curl of a vector field F, denoted by curl F or ∇ × F, at a point is defined in terms of its projection onto various lines through the point. If is any unit vector, the projection of the curl of F onto is defined to be the limiting value of a closed line integral in a plane orthogonal to as the path used in the integral becomes infinitesimally close to the point, divided by the area enclosed.
As such, the curl operator maps C1 functions from R3 to R3 to C0 functions from R3 to R3.
Implicitly, curl is defined by:
where is a line integral along the boundary of the area in question, and |A| is the magnitude of the area. If is an outward pointing in-plane normal, whereas is the unit vector perpendicular to the plane (see caption at right), then the orientation of C is chosen so that a tangent vector to C is positively oriented if and only if forms a positively oriented basis for R3 (right-hand rule).
The above formula means that the curl of a vector field is defined as the infinitesimal area density of the circulation of that field. To this definition fit naturally
- the Kelvin-Stokes theorem, as a global formula corresponding to the definition, and
- the following "easy to memorize" definition of the curl in curvilinear orthogonal coordinates, e.g. in cartesian coordinates, spherical, cylindrical, or even elliptical or parabolical coordinates:
If (x1, x2, x3) are the Cartesian coordinates and (u1,u2,u3) are the orthogonal coordinates, then
is the length of the coordinate vector corresponding to ui. The remaining two components of curl result from cyclic permutation of indices: 3,1,2 → 1,2,3 → 2,3,1.
Read more about this topic: Curl (mathematics)
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)