Cup Product

In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H∗(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.

Read more about Cup Product:  Definition, Properties, Interpretation, Examples, Massey Products

Famous quotes containing the words cup and/or product:

    Sunday morning may be cheery enough, with its extra cup of coffee and litter of Sunday newspapers, but there is always hanging over it the ominous threat of 3 P.M., when the sun gets around to the back windows and life stops dead in its tracks.
    Robert Benchley (1889–1945)

    Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.
    William Hazlitt (1778–1830)