Cubic Honeycomb

The cubic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 3-space, made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron.

It is a self-dual tessellation with Schläfli symbol {4,3,4}. It is part of a multidimensional family of hypercube honeycombs, with Schläfli symbols of the form {4,3,...,3,4}, starting with the square tiling, {4,4} in the plane.

It is one of 28 uniform honeycombs using convex uniform polyhedral cells.

Read more about Cubic Honeycomb:  Uniform Colorings, Related Polytopes and Tesellations

Famous quotes containing the word cubic:

    One of the great natural phenomena is the way in which a tube of toothpaste suddenly empties itself when it hears that you are planning a trip, so that when you come to pack it is just a twisted shell of its former self, with not even a cubic millimeter left to be squeezed out.
    Robert Benchley (1889–1945)