Construction
Suppose that A is a von Neumann algebra of operators acting on a Hilbert space H and G is a discrete group acting on A. We let K be the Hilbert space of all square summable H-valued functions on G. There is an action of A on K given by
- a(k)(g) = g-1(a)k(g)
for k in K, g, h in G, and a in A, and there is an action of G on K given by
- g(k)(h) = k(g-1h).
The crossed product is the von Neumann algebra acting on K generated by the actions of A and G on K. It does not depend (up to isomorphism) on the choice of the Hilbert space H.
This construction can be extended to work for any locally compact group G acting on any von Neumann algebra A. When is an abelian von Neumann algebra, this is the original group-measure space construction of Murray and von Neumann.
Read more about this topic: Crossed Product
Famous quotes containing the word construction:
“Striving toward a goal puts a more pleasing construction on our advance toward death.”
—Mason Cooley (b. 1927)
“No real vital character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the authors personality, developing by internal necessity as much as by external addition.”
—T.S. (Thomas Stearns)
“The construction of life is at present in the power of facts far more than convictions.”
—Walter Benjamin (18921940)