Estimation Via Importance Sampling
Consider the general problem of estimating the quantity, where is some performance function and is a member of some parametric family of distributions. Using importance sampling this quantity can be estimated as, where is a random sample from . For positive, the theoretically optimal importance sampling density (pdf)is given by . This, however, depends on the unknown . The CE method aims to approximate the optimal pdf by adaptively selecting members of the parametric family that are closest (in the Kullback-Leibler sense) to the optimal pdf .
Read more about this topic: Cross-entropy Method
Famous quotes containing the words estimation and/or importance:
“... it would be impossible for women to stand in higher estimation than they do here. The deference that is paid to them at all times and in all places has often occasioned me as much surprise as pleasure.”
—Frances Wright (17951852)
“For even satire is a form of sympathy. It is the way our sympathy flows and recoils that really determines our lives. And here lies the vast importance of the novel, properly handled. It can inform and lead into new places our sympathy away in recoil from things gone dead. Therefore the novel, properly handled, can reveal the most secret places of life: for it is the passional secret places of life, above all, that the tide of sensitive awareness needs to ebb and flow, cleansing and freshening.”
—D.H. (David Herbert)