Relations With Classifying Spaces and Group Cohomology
If X is a connected cell complex with homotopy groups πn(X) =0 for all n ≥ 2, then the universal covering space T of X is contractible, as follows from applying the Whitehead theorem to T. In this case X is a classifying space or K(G,1) for G = π1(X).
Moreover, for every n ≥ 0 the group of cellular n-chains Cn(T) (that is, a free abelian group with basis given by n-cells in T) also has a natural ZG-module structure. Here for an n-cell σ in T and for g in G the cell g σ is exactly the translate of σ by a covering transformation of T corresponding to g. Moreover, Cn(T) is a free ZG-module with free ZG-basis given by representatives of G-orbits of n-cells in T. In this case the standard topological chain complex
where ε is the augmentation map, is a free ZG-resolution of Z (where Z is equipped with the trivial ZG-module structure, g m = m for every g ∈ G and every m ∈ Z). This resolution can be used to compute group cohomology of G with arbitrary coefficients.
Read more about this topic: Covering Space
Famous quotes containing the words relations with, relations, spaces and/or group:
“I know all those people. I have friendly, social, and criminal relations with the whole lot of them.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)
“All of life and human relations have become so incomprehensibly complex that, when you think about it, it becomes terrifying and your heart stands still.”
—Anton Pavlovich Chekhov (18601904)
“Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,these are some of our astronomers.”
—Henry David Thoreau (18171862)
“[The Republicans] offer ... a detailed agenda for national renewal.... [On] reducing illegitimacy ... the state will use ... funds for programs to reduce out-of-wedlock pregnancies, to promote adoption, to establish and operate childrens group homes, to establish and operate residential group homes for unwed mothers, or for any purpose the state deems appropriate. None of the taxpayer funds may be used for abortion services or abortion counseling.”
—Newt Gingrich (b. 1943)