Convex Uniform Honeycomb - Hyperbolic Forms

Hyperbolic Forms

There are 9 Coxeter group families of compact uniform honeycombs in hyperbolic 3-space, generated as Wythoff constructions, and represented by ring permutations of the Coxeter-Dynkin diagrams for each family.

From these 9 families, there are a total of 76 unique honeycombs generated:

  • : - 9 forms
  • : - 15 forms
  • : - 9 forms
  • : - 11 forms (7 overlap with family, 4 are unique)
  • : - 9 forms
  • : - 6 forms
  • : - 9 forms
  • : - 9 forms
  • : - 6 forms

The full list of hyperbolic uniform honeycombs has not been proven and an unknown number of non-Wythoffian forms exist. One known example is in the {3,5,3} family.

There are also 23 noncompact Coxeter groups of rank 4. These families can produce uniform honeycombs with unbounded facets or vertex figure, including ideal vertices at infinity:

Hyperbolic noncompact groups
7 ,
7 , ,,
6 ,
3 ,

Read more about this topic:  Convex Uniform Honeycomb

Famous quotes containing the word forms:

    Mankind are more disposed to suffer, while evils are sufferable, than to right themselves by abolishing the forms to which they are accustomed.
    Thomas Jefferson (1743–1826)