Examples
- Euclidean spaces, that is, the usual three-dimensional space and its analogues for other dimensions, are convex metric spaces. Given any two distinct points and in such a space, the set of all points satisfying the above "triangle equality" forms the line segment between and which always has other points except and in fact, it has a continuum of points.
- Any convex set in a Euclidean space is a convex metric space with the induced Euclidean norm. For closed sets the converse is also true: if a closed subset of a Euclidean space together with the induced distance is a convex metric space, then it is a convex set (this is a particular case of a more general statement to be discussed below).
- A circle is a convex metric space, if the distance between two points is defined as the length of the shortest arc on the circle connecting them.
Read more about this topic: Convex Metric Space
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)