Convex Hull Algorithms - Higher Dimensions

Higher Dimensions

A number of algorithms are known for the three-dimensional case, as well as for arbitrary dimensions. See http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html. See also David Mount's Lecture Notes for comparison. Refer to Lecture 4 for the latest developments, including Chan's algorithm.

For a finite set of points, the convex hull is a convex polyhedron in three dimensions, or in general a convex polytope for any number of dimensions, whose vertices are some of the points in the input set. Its representation is not so simple as in the planar case, however. In higher dimensions, even if the vertices of a convex polytope are known, construction of its faces is a non-trivial task, as is the dual problem of constructing the vertices given the faces. The size of the output may be exponentially larger than the size of the input, and even in cases where the input and output are both of comparable size the known algorithms for high-dimensional convex hulls are not output-sensitive due both to issues with degenerate inputs and with intermediate results of high complexity.

Read more about this topic:  Convex Hull Algorithms

Famous quotes containing the words higher and/or dimensions:

    To look almost pretty, is an acquisition of higher delight to a girl who has been looking plain the first fifteen years of her life, than a beauty from her cradle can ever receive.
    Jane Austen (1775–1817)

    It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?—or animals?—even forests or oceans or rocks?—in this world of ours or, even, in worlds or dimensions elsewhere.
    Doris Lessing (b. 1919)