Continuous Spectrum - Self Adjoint Operators On Hilbert Space

Self Adjoint Operators On Hilbert Space

Hilbert spaces are Banach spaces, so the above discussion applies to bounded operators on Hilbert spaces as well, although possible differences may arise from the adjoint operation on operators. For example, let H be a Hilbert space and TL(H), σ(T*) is not σ(T) but rather its image under complex conjugation.

For a self adjoint TL(H), the Borel functional calculus gives additional ways to break up the spectrum naturally.

Read more about this topic:  Continuous Spectrum

Famous quotes containing the word space:

    This moment exhibits infinite space, but there is a space also wherein all moments are infinitely exhibited, and the everlasting duration of infinite space is another region and room of joys.
    Thomas Traherne (1636–1674)