Relation To Principal and Ehresmann Connections
Let E → M be a vector bundle of rank k and let F(E) be the principal frame bundle of E. Then a (principal) connection on F(E) induces a connection on E. First note that sections of E are in one-to-one correspondence with right-equivariant maps F(E) → Rk. (This can be seen by considering the pullback of E over F(E) → M, which is isomorphic to the trivial bundle F(E) × Rk.) Given a section σ of E let the corresponding equivariant map be ψ(σ). The covariant derivative on E is then given by
where XH is the horizontal lift of X (recall that the horizontal lift is determined by the connection on F(E)).
Conversely, a connection on E determines a connection on F(E), and these two constructions are mutually inverse.
A connection on E is also determined equivalently by a linear Ehresmann connection on E. This provides one method to construct the associated principal connection.
Read more about this topic: Connection (vector Bundle)
Famous quotes containing the words relation to, relation, principal and/or connections:
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.”
—Angela Carter (19401992)
“We must reserve a back shop all our own, entirely free, in which to establish our real liberty and our principal retreat and solitude.”
—Michel de Montaigne (15331592)
“Growing up human is uniquely a matter of social relations rather than biology. What we learn from connections within the family takes the place of instincts that program the behavior of animals; which raises the question, how good are these connections?”
—Elizabeth Janeway (b. 1913)