Formal Definition
Let E → M be a smooth vector bundle over a differentiable manifold M. Denote the space of smooth sections of E by Γ(E). A connection on E is an ℝ-linear map
such that the Leibniz rule
holds for all smooth functions f on M and all smooth sections σ of E.
If X is a tangent vector field on M (i.e. a section of the tangent bundle TM) one can define a covariant derivative along X
by contracting X with the resulting covariant index in the connection ∇ (i.e. ∇Xσ = (∇σ)(X)). The covariant derivative satisfies the following properties:
Conversely, any operator satisfying the above properties defines a connection on E and a connection in this sense is also known as a covariant derivative on E.
Read more about this topic: Connection (vector Bundle)
Famous quotes containing the words formal and/or definition:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)