Connection (vector Bundle) - Formal Definition

Formal Definition

Let EM be a smooth vector bundle over a differentiable manifold M. Denote the space of smooth sections of E by Γ(E). A connection on E is an ℝ-linear map

such that the Leibniz rule

holds for all smooth functions f on M and all smooth sections σ of E.

If X is a tangent vector field on M (i.e. a section of the tangent bundle TM) one can define a covariant derivative along X

by contracting X with the resulting covariant index in the connection ∇ (i.e. ∇Xσ = (∇σ)(X)). The covariant derivative satisfies the following properties:

\begin{align}&\nabla_X(\sigma_1 + \sigma_2) = \nabla_X\sigma_1 + \nabla_X\sigma_2\\
&\nabla_{X_1 + X_2}\sigma = \nabla_{X_1}\sigma + \nabla_{X_2}\sigma\\
&\nabla_{X}(f\sigma) = f\nabla_X\sigma + X(f)\sigma\\
&\nabla_{fX}\sigma = f\nabla_X\sigma.\end{align}

Conversely, any operator satisfying the above properties defines a connection on E and a connection in this sense is also known as a covariant derivative on E.

Read more about this topic:  Connection (vector Bundle)

Famous quotes containing the words formal and/or definition:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)