Connection (vector Bundle) - Formal Definition

Formal Definition

Let EM be a smooth vector bundle over a differentiable manifold M. Denote the space of smooth sections of E by Γ(E). A connection on E is an ℝ-linear map

such that the Leibniz rule

holds for all smooth functions f on M and all smooth sections σ of E.

If X is a tangent vector field on M (i.e. a section of the tangent bundle TM) one can define a covariant derivative along X

by contracting X with the resulting covariant index in the connection ∇ (i.e. ∇Xσ = (∇σ)(X)). The covariant derivative satisfies the following properties:

\begin{align}&\nabla_X(\sigma_1 + \sigma_2) = \nabla_X\sigma_1 + \nabla_X\sigma_2\\
&\nabla_{X_1 + X_2}\sigma = \nabla_{X_1}\sigma + \nabla_{X_2}\sigma\\
&\nabla_{X}(f\sigma) = f\nabla_X\sigma + X(f)\sigma\\
&\nabla_{fX}\sigma = f\nabla_X\sigma.\end{align}

Conversely, any operator satisfying the above properties defines a connection on E and a connection in this sense is also known as a covariant derivative on E.

Read more about this topic:  Connection (vector Bundle)

Famous quotes containing the words formal and/or definition:

    It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between “ideas” and “things,” both of which he assumes as given; he need not inquire whether either sphere is “real” or whether, in the final analysis, reality consists in their interaction.
    Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)