Connected Sum - Connected Sum Along A Submanifold

Connected Sum Along A Submanifold

Let and be two smooth, oriented manifolds of equal dimension and a smooth, closed, oriented manifold, embedded as a submanifold into both and . Suppose furthermore that there exists an isomorphism of normal bundles

that reverses the orientation on each fiber. Then induces an orientation-preserving diffeomorphism

where each normal bundle is diffeomorphically identified with a neighborhood of in, and the map

is the orientation-reversing diffeomorphic involution

on normal vectors. The connected sum of and along is then the space

obtained by gluing the deleted neighborhoods together by the orientation-preserving diffeomorphism. The sum is often denoted

Its diffeomorphism type depends on the choice of the two embeddings of and on the choice of .

Loosely speaking, each normal fiber of the submanifold contains a single point of, and the connected sum along is simply the connected sum as described in the preceding section, performed along each fiber. For this reason, the connected sum along is often called the fiber sum.

The special case of a point recovers the connected sum of the preceding section.

Read more about this topic:  Connected Sum

Famous quotes containing the words connected and/or sum:

    War and culture, those are the two poles of Europe, her heaven and hell, her glory and shame, and they cannot be separated from one another. When one comes to an end, the other will end also and one cannot end without the other. The fact that no war has broken out in Europe for fifty years is connected in some mysterious way with the fact that for fifty years no new Picasso has appeared either.
    Milan Kundera (b. 1929)

    Wonderful “Force of Public Opinion!” We must act and walk in all points as it prescribes; follow the traffic it bids us, realise the sum of money, the degree of “influence” it expects of us, or we shall be lightly esteemed; certain mouthfuls of articulate wind will be blown at us, and this what mortal courage can front?
    Thomas Carlyle (1795–1881)