Connected Sum Along A Codimension-two Submanifold
Another important special case occurs when the dimension of is two less than that of the . Then the isomorphism of normal bundles exists whenever their Euler classes are opposite:
Furthermore, in this case the structure group of the normal bundles is the circle group ; it follows that the choice of embeddings can be canonically identified with the group of homotopy classes of maps from to the circle, which in turn equals the first integral cohomology group . So the diffeomorphism type of the sum depends on the choice of and a choice of element from .
A connected sum along a codimension-two can also be carried out in the category of symplectic manifolds; this elaboration is called the symplectic sum.
Read more about this topic: Connected Sum
Famous quotes containing the words connected and/or sum:
“We cant nourish our children if we dont nourish ourselves.... Parents who manage to stay married, sane, and connected to each other share one basic characteristic: The ability to protect even small amounts of time together no matter what else is going on in their lives.”
—Ron Taffel (20th century)
“Never is a historic deed already completed when it is done but always only when it is handed down to posterity. What we call history by no means represents the sum total of all significant deeds.... World history ... only comprises that tiny lighted sector which chanced to be placed in the spotlight by poetic or scholarly depictions.”
—Stefan Zweig (18811942)