A First Application of Kuratowski's Free Set Theorem
The abovementioned Problem 1 (Schmidt), Problem 2 (Dobbertin), and Problem 3 (Goodearl) were solved simultaneously in the negative in 1998.
Theorem (Wehrung 1998). There exists a dimension vector space G over the rationals with order-unit whose positive cone G+ is not isomorphic to V(R), for any von Neumann regular ring R, and is not measurable in Dobbertin's sense. Furthermore, the maximal semilattice quotient of G+ does not satisfy Schmidt's Condition. Furthermore, G can be taken of any given cardinality greater than or equal to ℵ2.
It follows from the previously mentioned works of Schmidt, Huhn, Dobbertin, Goodearl, and Handelman that the ℵ2 bound is optimal in all three negative results above.
As the ℵ2 bound suggests, infinite combinatorics are involved. The principle used is Kuratowski's Free Set Theorem, first published in 1951. Only the case n=2 is used here.
The semilattice part of the result above is achieved via an infinitary semilattice-theoretical statement URP (Uniform Refinement Property). If we want to disprove Schmidt's problem, the idea is (1) to prove that any generalized Boolean semilattice satisfies URP (which is easy), (2) that URP is preserved under homomorphic image under a weakly distributive homomorphism (which is also easy), and (3) that there exists a distributive (∨,0)-semilattice of cardinality ℵ2 that does not satisfy URP (which is difficult, and uses Kuratowski's Free Set Theorem).
Schematically, the construction in the theorem above can be described as follows. For a set Ω, we consider the partially ordered vector space E(Ω) defined by generators 1 and ai,x, for i<2 and x in Ω, and relations a0,x+a1,x=1, a0,x ≥ 0, and a1,x ≥ 0, for any x in Ω. By using a Skolemization of the theory of dimension groups, we can embed E(Ω) functorially into a dimension vector space F(Ω). The vector space counterexample of the theorem above is G=F(Ω), for any set Ω with at least ℵ2 elements.
This counterexample has been modified subsequently by Ploščica and Tůma to a direct semilattice construction. For a (∨,0)-semilattice, the larger semilattice R(S) is the (∨,0)-semilattice freely generated by new elements t(a,b,c), for a, b, c in S such that c ≤ a ∨ b, subjected to the only relations c=t(a,b,c) ∨ t(b,a,c) and t(a,b,c) ≤ a. Iterating this construction gives the free distributive extension of S. Now, for a set Ω, let L(Ω) be the (∨,0)-semilattice defined by generators 1 and ai,x, for i<2 and x in Ω, and relations a0,x ∨ a1,x=1, for any x in Ω. Finally, put G(Ω)=D(L(Ω)).
In most related works, the following uniform refinement property is used. It is a modification of the one introduced by Wehrung in 1998 and 1999.
Definition (Ploščica, Tůma, and Wehrung 1998). Let e be an element in a (∨,0)-semilattice S. We say that the weak uniform refinement property WURP holds at e, if for all families and of elements in S such that ai ∨ bi=e for all i in I, there exists a family of elements of S such that the relations
• ci,j ≤ ai,bj,
• ci,j ∨ aj ∨ bi=e,
• ci,k ≤ ci,j∨ cj,k
hold for all i, j, k in I. We say that S satisfies WURP, if WURP holds at every element of S.
By building on Wehrung's abovementioned work on dimension vector spaces, Ploščica and Tůma proved that WURP does not hold in G(Ω), for any set Ω of cardinality at least ℵ2. Hence G(Ω) does not satisfy Schmidt's Condition. It is to be noted that all negative representation results mentioned here always make use of some uniform refinement property, including the first one about dimension vector spaces.
However, the semilattices used in these negative results are relatively complicated. The following result, proved by Ploščica, Tůma, and Wehrung in 1998, is more striking, because it shows examples of representable semilattices that do not satisfy Schmidt's Condition. We denote by FV(Ω) the free lattice on Ω in V, for any variety V of lattices.
Theorem (Ploščica, Tůma, and Wehrung 1998). The semilattice Conc FV(Ω) does not satisfy WURP, for any set Ω of cardinality at least ℵ2 and any non-distributive variety V of lattices. Consequently, Conc FV(Ω) does not satisfy Schmidt's Condition.
It is proved by Tůma and Wehrung in 2001 that Conc FV(Ω) is not isomorphic to Conc L, for any lattice L with permutable congruences. By using a slight weakening of WURP, this result is extended to arbitrary algebras with permutable congruences by Růžička, Tůma, and Wehrung in 2006. Hence, for example, if Ω has at least ℵ2 elements, then Conc FV(Ω) is not isomorphic to the normal subgroup lattice of any group, or the submodule lattice of any module.
Read more about this topic: Congruence Lattice Problem
Famous quotes containing the words application, free, set and/or theorem:
“Great abilites are not requisite for an Historian; for in historical composition, all the greatest powers of the human mind are quiescent. He has facts ready to his hand; so there is no exercise of invention. Imagination is not required in any degree; only about as much as is used in the lowest kinds of poetry. Some penetration, accuracy, and colouring, will fit a man for the task, if he can give the application which is necessary.”
—Samuel Johnson (17091784)
“A nation grown free in a single day is a child born with the limbs and the vigour of a man, who would take a drawn sword for his rattle, and set the house in a blaze that he might chuckle over the splendour.”
—Sydney Smith (17711845)
“When parents fail to set appropriate limits, children may feel more vulnerable at night: the aggressive urges that have not been tamed by day may be terrifying to a small child alone in the dark.”
—Cathy Rindner Tempelsman (20th century)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)