Confluent Hypergeometric Function - Application To Continued Fractions

Application To Continued Fractions

By applying a limiting argument to Gauss's continued fraction it can be shown that


\frac{M(a+1,b+1,z)}{M(a,b,z)} = \cfrac{1}{1 - \cfrac{{\displaystyle\frac{b-a}{b(b+1)}z}}
{1 + \cfrac{{\displaystyle\frac{a+1}{(b+1)(b+2)}z}}
{1 - \cfrac{{\displaystyle\frac{b-a+1}{(b+2)(b+3)}z}}
{1 + \cfrac{{\displaystyle\frac{a+2}{(b+3)(b+4)}z}}{1 - \ddots}}}}}

and that this continued fraction converges uniformly to a meromorphic function of z in every bounded domain that does not include a pole.

Read more about this topic:  Confluent Hypergeometric Function

Famous quotes containing the words application to, application and/or continued:

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    Our current obsession with creativity is the result of our continued striving for immortality in an era when most people no longer believe in an after-life.
    Arianna Stassinopoulos (b. 1950)