Concentrated Solar Power - Current Technology

Current Technology

CSP is used to produce electricity (sometimes called solar thermoelectricity, usually generated through steam). Concentrated-solar technology systems use mirrors or lenses with tracking systems to focus a large area of sunlight onto a small area. The concentrated light is then used as heat or as a heat source for a conventional power plant (solar thermoelectricity). The solar concentrators used in CSP systems can often also be used to provide industrial process heating or cooling, such as in solar air-conditioning.

Concentrating technologies exist in four common forms, namely parabolic trough, dish Stirlings, concentrating linear Fresnel reflector, and solar power tower. Although simple, these solar concentrators are quite far from the theoretical maximum concentration. For example, the parabolic-trough concentration gives about 1/3 of the theoretical maximum for the design acceptance angle, that is, for the same overall tolerances for the system. Approaching the theoretical maximum may be achieved by using more elaborate concentrators based on nonimaging optics.

Different types of concentrators produce different peak temperatures and correspondingly varying thermodynamic efficiencies, due to differences in the way that they track the sun and focus light. New innovations in CSP technology are leading systems to become more and more cost-effective.

Read more about this topic:  Concentrated Solar Power

Famous quotes containing the words current and/or technology:

    For me, Romanticism is the most recent and the most current expression of beauty.
    Charles Baudelaire (1821–1867)

    The real accomplishment of modern science and technology consists in taking ordinary men, informing them narrowly and deeply and then, through appropriate organization, arranging to have their knowledge combined with that of other specialized but equally ordinary men. This dispenses with the need for genius. The resulting performance, though less inspiring, is far more predictable.
    John Kenneth Galbraith (b. 1908)