Complex Multiplication - Singular Moduli

Singular Moduli

The points of the upper half-plane τ which correspond to the period ratios of elliptic curves over the complex numbers with complex multiplication are precisely the imaginary quadratic numbers. The corresponding modular invariants j(τ) are the singular moduli, coming from an older terminology in which "singular" referred to the property of having non-trivial endomorphisms rather than referring to a singular curve.

The modular function j(τ) is algebraic on imaginary quadratic numbers τ: these are the only algebraic numbers in the upper half-plane for which j is algebraic.

If Λ is a lattice with period ratio τ then we write j(Λ) for j(τ). If further Λ is an ideal a in a ring of integers O of a quadratic imaginary field K then we write j(a) for the corresponding singular modulus. The values j(a) are then real algebraic integers, and generate the Hilbert class field H of K: the field extension degree = h is the class number of K and the H/K is a Galois extension with Galois group isomorphic to the ideal class group of K. The class group acts on the values j(a) by : j(a) → j(ab).

In particular, if K has class number one, then j(a) = j(O) is a rational integer: for example, j(Z) = j(i) = 1728.

Read more about this topic:  Complex Multiplication

Famous quotes containing the word singular:

    I don’t have any problem with a reporter or a news person who says the President is uninformed on this issue or that issue. I don’t think any of us would challenge that. I do have a problem with the singular focus on this, as if that’s the only standard by which we ought to judge a president. What we learned in the last administration was how little having an encyclopedic grasp of all the facts has to do with governing.
    David R. Gergen (b. 1942)