Complex Logarithm - Problems With Inverting The Complex Exponential Function

Problems With Inverting The Complex Exponential Function

For a function to have an inverse, it must map distinct values to distinct values. But the complex exponential function does not have this injective property because: ew+2πi = ew for any w, since adding to w has the effect of rotating ew counterclockwise θ radians. Even worse, the infinitely many numbers

forming a sequence of equally spaced points along a vertical line, are all mapped to the same number by the exponential function. So the exponential function does not have an inverse function in the standard sense.

There are two solutions to this problem.

One is to restrict the domain of the exponential function to a region that does not contain any two numbers differing by an integer multiple of 2πi: this leads naturally to the definition of branches of log z, which are certain functions that single out one logarithm of each number in their domains. This is analogous to the definition of sin−1x on as the inverse of the restriction of sin θ to the interval : there are infinitely many real numbers θ with sin θ = x, but one (somewhat arbitrarily) chooses the one in .

Another way to resolve the indeterminacy is to view the logarithm as a function whose domain is not a region in the complex plane, but a Riemann surface that covers the punctured complex plane in an infinite-to-1 way.

Branches have the advantage that they can be evaluated at complex numbers. On the other hand, the function on the Riemann surface is elegant in that it packages together all branches of log z and does not require any choice for its definition.

Read more about this topic:  Complex Logarithm

Famous quotes containing the words problems with, problems, complex and/or function:

    She has problems with separation; he has trouble with unity—problems that make themselves felt in our relationships with our children just as they do in our relations with each other. She pulls for connection; he pushes for separateness. She tends to feel shut out; he tends to feel overwhelmed and intruded upon. It’s one of the reasons why she turns so eagerly to children—especially when they’re very young.
    Lillian Breslow Rubin (20th century)

    In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . It’s a mental vacation compared with figuring out who we are, what we believe, what we’re going to do with our talents, how we’re going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.
    Roger Gould (20th century)

    Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.
    Michel Foucault (1926–1984)

    The mother’s and father’s attitudes toward the child correspond to the child’s own needs.... Mother has the function of making him secure in life, father has the function of teaching him, guiding him to cope with those problems with which the particular society the child has been born into confronts him.
    Erich Fromm (1900–1980)