Compactly Generated Space - Properties

Properties

We denote CGTop the full subcategory of Top with objects the compactly generated spaces, and CGHaus the full subcategory of CGTop with objects the Hausdorff separated spaces.

Given any topological space X we can define a (possibly) finer topology on X which is compactly generated. Let {Kα} denote the family of compact subsets of X. We define the new topology on X by declaring a subset A to be closed if and only if AKα is closed in Kα for each α. Denote this new space by Xc. One can show that the compact subsets of Xc and X coincide and the induced topologies are the same. It follows that Xc is compactly generated. If X was compactly generated to start with then Xc = X otherwise the topology on Xc is strictly finer than X (i.e. there are more open sets).

This construction is functorial. The functor from Top to CGTop which takes X to Xc is right adjoint to the inclusion functor CGTopTop.

The continuity of a map defined on compactly generated space X can be determined solely by looking at the compact subsets of X. Specifically, a function f : XY is continuous if and only if it is continuous when restricted to each compact subset KX.

If X and Y are two compactly generated spaces the product X × Y may not be compactly generated (it will be if at least one of the factors is locally compact). Therefore when working in categories of compactly generated spaces it is necessary to define the product as (X × Y)c.

The exponential object in the CGHaus is given by (YX)c where YX is the space of continuous maps from X to Y with the compact-open topology.

These ideas can be generalised to the non-Hausdorff case, see section 5.9 in the book `Topology and groupoids' listed below. This is useful since identification spaces of Hausdorff spaces need not be Hausdorff.

Read more about this topic:  Compactly Generated Space

Famous quotes containing the word properties:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)