Compact Operator - Completely Continuous Operators

Completely Continuous Operators

Let X and Y be Banach spaces. A bounded linear operator T : XY is called completely continuous if, for every weakly convergent sequence from X, the sequence is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous. If X is a reflexive Banach space, then every completely continuous operator T : XY is compact.

Read more about this topic:  Compact Operator

Famous quotes containing the words completely and/or continuous:

    Indigenous to Minnesota, and almost completely ignored by its people, are the stark, unornamented, functional clusters of concrete—Minnesota’s grain elevators. These may be said to express unconsciously all the principles of modernism, being built for use only, with little regard for the tenets of esthetic design.
    —Federal Writers’ Project Of The Wor, U.S. public relief program (1935-1943)

    If an irreducible distinction between theatre and cinema does exist, it may be this: Theatre is confined to a logical or continuous use of space. Cinema ... has access to an alogical or discontinuous use of space.
    Susan Sontag (b. 1933)