Compact Operator - Compact Operator On Hilbert Spaces

Compact Operator On Hilbert Spaces

An equivalent definition of compact operators on a Hilbert space may be given as follows.

An operator on a Hilbert space

is said to be compact if it can be written in the form

where and are (not necessarily complete) orthonormal sets. Here, is a sequence of positive numbers, called the singular values of the operator. The singular values can accumulate only at zero. If the sequence becomes stationary at zero, that is for some, then the operator has finite rank resp. a finite-dimenisional range and can be written as

The bracket is the scalar product on the Hilbert space; the sum on the right hand side converges in the operator norm.

An important subclass of compact operators are the trace-class or nuclear operators.

Read more about this topic:  Compact Operator

Famous quotes containing the words compact and/or spaces:

    What compact mean you to have with us?
    Will you be pricked in number of our friends,
    Or shall we on, and not depend on you?
    William Shakespeare (1564–1616)

    In any case, raw aggression is thought to be the peculiar province of men, as nurturing is the peculiar province of women.... The psychologist Erik Erikson discovered that, while little girls playing with blocks generally create pleasant interior spaces and attractive entrances, little boys are inclined to pile up the blocks as high as they can and then watch them fall down: “the contemplation of ruins,” Erikson observes, “is a masculine specialty.”
    Joyce Carol Oates (b. 1938)