CNO Cycle

The CNO cycle (for carbon–nitrogen–oxygen) is one of two sets of fusion reactions by which stars convert hydrogen to helium, the other being the proton–proton chain. Unlike the proton–proton chain reaction, the CNO cycle is a catalytic cycle. Theoretical models show that the CNO cycle is the dominant source of energy in stars more massive than about 1.3 times the mass of the Sun. The proton–proton chain is more important in stars the mass of the Sun or less. This difference stems from temperature dependency differences between the two reactions; pp-chain reactions start occurring at temperatures around 4×106 K, making it the dominant energy source in smaller stars. A self-maintaining CNO chain starts occurring at approximately 15×106 K, but its energy output rises much more rapidly with increasing temperatures. At approximately 17×106 K, the CNO cycle starts becoming the dominant source of energy. The Sun has a core temperature of around 15.7×106 K and only 1.7% of 4He nuclei being produced in the Sun are born in the CNO cycle. The CNO-I process was independently proposed by Carl von Weizsäcker and Hans Bethe in 1938 and 1939, respectively.

In the CNO cycle, four protons fuse, using carbon, nitrogen and oxygen isotopes as a catalyst, to produce one alpha particle, two positrons and two electron neutrinos. Although there are various paths and catalysts involved in the CNO cycles, simply speaking all these cycles have the same net result:

4 1
1H → 4
2He + 2 e+ + 2 ν
e + 3 γ + 26.8 MeV

The positrons will almost instantly annihilate with electrons, releasing energy in the form of gamma rays. The neutrinos escape from the star carrying away some energy. The carbon, nitrogen, and oxygen isotopes are in effect one nucleus that goes through a number of transformations in an endless loop.

Read more about CNO Cycle:  Cold CNO Cycles, Hot CNO Cycles, Use in Astronomy

Famous quotes containing the word cycle:

    The cycle of the machine is now coming to an end. Man has learned much in the hard discipline and the shrewd, unflinching grasp of practical possibilities that the machine has provided in the last three centuries: but we can no more continue to live in the world of the machine than we could live successfully on the barren surface of the moon.
    Lewis Mumford (1895–1990)