Theory
The quantum tunneling may be calculated either by extending fission theory to a larger mass asymmetry or by heavier emitted particle from alpha decay theory.
Both fission-like and alpha-like approaches are able to express the decay constant = ln 2 / Tc, as a product of three model-dependent quantities
where is the frequency of assaults on the barrier per second, S is the preformation probability of the cluster at the nuclear surface, and Ps is the penetrability of the external barrier. In alpha-like theories S is an overlap integral of the wave function of the three partners (parent, daughter and emitted cluster). In a fission theory the preformation probability is the penetrability of the internal part of the barrier from the initial turning point Ri to the touching point Rt. Very frequently it is calculated by using the Wentzel-Kramers-Brillouin (WKB) approximation.
A very large number, of the order 105, of parent-emitted cluster combinations were considered in a systematic search for new decay modes. The large amount of computations could be performed in a reasonable time by using the ASAF model developed by Dorin N Poenaru, Walter Greiner et al.. The model was the first to be used to predict measurable quantities in cluster decay. More than 150 cluster decay modes have been predicted before any other kind of half-lives calculations have been reported. Comprehensive tables of half-lives, branching ratios, and kinetic energies have been published, e.g. . Potential barrier shapes similar to that considered within the ASAF model have been calculated by using the macroscopic-microscopic method.
Previously it was shown that even alpha decay may be considered a particular case of cold fission. The ASAF model may be used to describe in a unified manner cold alpha decay, cluster decay and cold fission (see figure 6.7, p. 287 of the Ref. ).
One can obtain with good approximation one universal curve (UNIV) for any kind of cluster decay mode with a mass number Ae, including alpha decay
In a logarithmic scale the equation log T = f(log Ps) represents a single straight line which can be conveniently used to estimate the half-life. A single universal curve for alpha decay and cluster decay modes results by expressing log T + log S = f(log Ps). The experimental data on cluster decay in three groups of even-even, even-odd, and odd-even parent nuclei are reproduced with comparable accuracy by both types of universal curves, fission-like UNIV and UDL derived using alpha-like R-matrix theory.
In order to find the released energy
one can use the compilation of measured masses M, Md, and Me of the parent, daughter and emitted nuclei, c is the light velocity. The mass excess is transformed into energy according to the Einstein's formula E = mc2.
Read more about this topic: Cluster Decay
Famous quotes containing the word theory:
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)
“The struggle for existence holds as much in the intellectual as in the physical world. A theory is a species of thinking, and its right to exist is coextensive with its power of resisting extinction by its rivals.”
—Thomas Henry Huxley (182595)
“Frankly, these days, without a theory to go with it, I cant see a painting.”
—Tom Wolfe (b. 1931)