Statement For Principal Ideal Domains
For a principal ideal domain R the Chinese remainder theorem takes the following form: If u1, …, uk are elements of R which are pairwise coprime, and u denotes the product u1…uk, then the quotient ring R/uR and the product ring R/u1R× … × R/ukR are isomorphic via the isomorphism
such that
This map is well-defined and an isomorphism of rings; the inverse isomorphism can be constructed as follows. For each i, the elements ui and u/ui are coprime, and therefore there exist elements r and s in R with
Set ei = s u/ui. Then the inverse of f is the map
such that
This statement is a straightforward generalization of the above theorem about integer congruences: the ring Z of integers is a principal ideal domain, the surjectivity of the map f shows that every system of congruences of the form
can be solved for x, and the injectivity of the map f shows that all the solutions x are congruent modulo u.
Read more about this topic: Chinese Remainder Theorem
Famous quotes containing the words statement, principal, ideal and/or domains:
“The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.”
—Polly Berrien Berends (20th century)
“God should not be called an individual substance, since the principal of individuation is matter.”
—Thomas Aquinas (c. 12251274)
“An ideal is merely the projection, on an enormously enlarged scale, of some aspect of personality.”
—Aldous Huxley (18941963)
“I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,if I can show men that there is some beauty awake while they are asleep,if I add to the domains of poetry.”
—Henry David Thoreau (18171862)
