Chernoff Bounds
If the random variables may also be assumed to be independent, it is possible to obtain sharper bounds. Let δ > 0. Then
With this inequality it can be shown that
where μ is the mean of the distribution. Further discussion may be found in the article on Chernoff bounds
Read more about this topic: Chebyshev's Inequality
Famous quotes containing the word bounds:
“Prohibition will work great injury to the cause of temperance. It is a species of intemperance within itself, for it goes beyond the bounds of reason in that it attempts to control a mans appetite by legislation, and makes a crime out of things that are not crimes. A Prohibition law strikes a blow at the very principles upon which our government was founded.”
—Abraham Lincoln (18091865)