Chebyshev Polynomials - Explicit Expressions

Explicit Expressions

Different approaches to defining Chebyshev polynomials lead to different explicit expressions such as:

T_n(x) =
\begin{cases}
\cos(n\arccos(x)), & \ x \in \\
\cosh(n \, \mathrm{arccosh}(x)), & \ x \ge 1 \\
(-1)^n \cosh(n \, \mathrm{arccosh}(-x)), & \ x \le -1 \\
\end{cases} \,\!



\begin{align}
T_n(x) & = \frac{(x-\sqrt{x^2-1})^n+(x+\sqrt{x^2-1})^n}{2} \\
& = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (x^2-1)^k x^{n-2k} \\
& = x^n \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (1 - x^{-2})^k \\
& = \frac{n}{2}\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k \frac{(n-k-1)!}{k!(n-2k)!}~(2x)^{n-2k} \quad (n>0) \\
& = n \sum_{k=0}^{n}(-2)^{k} \frac{(n+k-1)!} {(n-k)!(2k)!}(1 - x)^k \quad (n>0)\\
& = \, _2F_1\left(-n,n;\frac 1 2; \frac{1-x} 2 \right) \\
\end{align}



\begin{align}
U_n(x) & = \frac{(x+\sqrt{x^2-1})^{n+1} - (x-\sqrt{x^2-1})^{n+1}}{2\sqrt{x^2-1}} \\
& = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (x^2-1)^k x^{n-2k} \\
& = x^n \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (1 - x^{-2})^k \\
& =\sum_{k=0}^{\lfloor n/2\rfloor} \binom{2k-(n+1)}{k}~(2x)^{n-2k} \quad (n>0)\\
& =\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k \binom{n-k}{k}~(2x)^{n-2k} \quad (n>0)\\
& = \sum_{k=0}^{n}(-2)^{k} \frac{(n+k+1)!} {(n-k)!(2k+1)!}(1 - x)^k \quad (n>0)\\
& = (n+1) \, _2F_1\left(-n,n+2; \tfrac{3}{2}; \tfrac{1}{2}\left \right)
\end{align}

where is a hypergeometric function.

Read more about this topic:  Chebyshev Polynomials

Famous quotes containing the words explicit and/or expressions:

    I think “taste” is a social concept and not an artistic one. I’m willing to show good taste, if I can, in somebody else’s living room, but our reading life is too short for a writer to be in any way polite. Since his words enter into another’s brain in silence and intimacy, he should be as honest and explicit as we are with ourselves.
    John Updike (b. 1932)

    Each child has his own individual expressions to offer to the world. That expression can take many forms, from artistic interests, a way of thinking, athletic activities, a particular style of dressing, musical talents, different hobbies, etc. Our job is to join our children in discovering who they are.
    Stephanie Martson (20th century)