Cayley's Theorem - Proof of The Theorem

Proof of The Theorem

Where g is any element of G, consider the function fg : GG, defined by fg(x) = g*x. By the existence of inverses, this function has a two-sided inverse, . So multiplication by g acts as a bijective function. Thus, fg is a permutation of G, and so is a member of Sym(G).

The set is a subgroup of Sym(G) which is isomorphic to G. The fastest way to establish this is to consider the function T : G → Sym(G) with T(g) = fg for every g in G. T is a group homomorphism because (using "•" for composition in Sym(G)):

for all x in G, and hence:

The homomorphism T is also injective since T(g) = idG (the identity element of Sym(G)) implies that g*x = x for all x in G, and taking x to be the identity element e of G yields g = g*e = e. Alternatively, T is also injective since, if g*x=g'*x implies g=g' (by post-multiplying with the inverse of x, which exists because G is a group).

Thus G is isomorphic to the image of T, which is the subgroup K.

T is sometimes called the regular representation of G.

Read more about this topic:  Cayley's Theorem

Famous quotes containing the words proof of, proof and/or theorem:

    Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?
    Henry David Thoreau (1817–1862)

    The chief contribution of Protestantism to human thought is its massive proof that God is a bore.
    —H.L. (Henry Lewis)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)