Cayley's Theorem - Examples of The Regular Group Representation

Examples of The Regular Group Representation

Z2 = {0,1} with addition modulo 2; group element 0 corresponds to the identity permutation e, group element 1 to permutation (12).

Z3 = {0,1,2} with addition modulo 3; group element 0 corresponds to the identity permutation e, group element 1 to permutation (123), and group element 2 to permutation (132). E.g. 1 + 1 = 2 corresponds to (123)(123)=(132).

Z4 = {0,1,2,3} with addition modulo 4; the elements correspond to e, (1234), (13)(24), (1432).

The elements of Klein four-group {e, a, b, c} correspond to e, (12)(34), (13)(24), and (14)(23).

S3 (dihedral group of order 6) is the group of all permutations of 3 objects, but also a permutation group of the 6 group elements:

* e a b c d f permutation
e e a b c d f e
a a e d f b c (12)(35)(46)
b b f e d c a (13)(26)(45)
c c d f e a b (14)(25)(36)
d d c a b f e (156)(243)
f f b c a e d (165)(234)

Read more about this topic:  Cayley's Theorem

Famous quotes containing the words examples of the, examples of, examples, regular and/or group:

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    While you’re playing cards with a regular guy or having a bite to eat with him, he seems a peaceable, good-humoured and not entirely dense person. But just begin a conversation with him about something inedible, politics or science, for instance, and he ends up in a deadend or starts in on such an obtuse and base philosophy that you can only wave your hand and leave.
    Anton Pavlovich Chekhov (1860–1904)

    With a group of bankers I always had the feeling that success was measured by the extent one gave nothing away.
    Francis Aungier, Pakenham, 7th Earl Longford (b. 1905)