A Cayley table, after the 19th century British mathematician Arthur Cayley, describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table. Many properties of a group — such as whether or not it is abelian, which elements are inverses of which elements, and the size and contents of the group's center — can be easily deduced by examining its Cayley table.
A simple example of a Cayley table is the one for the group {1, −1} under ordinary multiplication:
× | 1 | −1 |
---|---|---|
1 | 1 | −1 |
−1 | −1 | 1 |
Read more about Cayley Table: History, Structure and Layout, Constructing Cayley Tables, Permutation Matrix Generation, Generalizations
Famous quotes containing the word table:
“Many a time I have seen my mother leap up from the dinner table to engage the swarming flies with an improvised punkah, and heard her rejoice and give humble thanks simultaneously that Baltimore was not the sinkhole that Washington was.”
—H.L. (Henry Lewis)