In group theory, the quaternion group is a non-abelian group of order eight, isomorphic to a certain eight-element subset of the quaternions under multiplication. It is often denoted by Q or Q8, and is given by the group presentation
where 1 is the identity element and −1 commutes with the other elements of the group.
Read more about Quaternion Group: Cayley Graph, Cayley Table, Properties, Matrix Representations, Galois Group, Generalized Quaternion Group
Famous quotes containing the word group:
“Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.”
—Mary Barnett Gilson (1877?)