Related Theories
CDT has some similarities with loop quantum gravity, especially with its spin foam formulations. For example, the Lorentzian Barrett-Crane model is essentially a non-perturbative prescription for computing path integrals, just like CDT. There are important differences, however. Spin foam formulations of quantum gravity use different degrees of freedom and different Lagrangians. For example, in CDT, the distance, or "the interval", between any two points in a given triangulation can be calculated exactly (triangulations are eigenstates of the distance operator). This is not true for spin foams or loop quantum gravity in general.
Another approach to quantum gravity that is closely related to causal dynamic triangulation is called causal sets. Both CDT and causal sets attempt to model the spacetime with a discrete causal structure. The main difference between the two is that the causal set approach is very general, whereas CDT assumes a specific relationship between the lattice of spacetime events and geometry. Consequently, the Lagrangian of CDT is constrained by the initial assumptions to the extent that it can be written down explicitly and analyzed (see, for example, hep-th/0505154, page 5), whereas causal-set theory is not as completely developed at this point.
Read more about this topic: Causal Dynamical Triangulation
Famous quotes containing the words related and/or theories:
“Becoming responsible adults is no longer a matter of whether children hang up their pajamas or put dirty towels in the hamper, but whether they care about themselves and othersand whether they see everyday chores as related to how we treat this planet.”
—Eda Le Shan (20th century)
“Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.”
—Thomas Henry Huxley (182595)