Cauchy Sequence - in Real Numbers

In Real Numbers

A sequence

of real numbers is called Cauchy, if for every positive real number ε, there is a positive integer N such that for all natural numbers m, n > N

where the vertical bars denote the absolute value. In a similar way one can define Cauchy sequences of rational or complex numbers. Cauchy formulated such a condition by requiring to be infinitesimal for every pair of infinite m, n.

Read more about this topic:  Cauchy Sequence

Famous quotes containing the words real and/or numbers:

    We are tainted by modern philosophy which has taught us that all is good, whereas evil has polluted everything and in a very real sense all is evil, since nothing is in its proper place.
    Joseph De Maistre (1753–1821)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)