Cauchy Product - Relation To Convolution of Functions

Relation To Convolution of Functions

One can also define the Cauchy product of doubly infinite sequences, thought of as functions on . In this case the Cauchy product is not always defined: for instance, the Cauchy product of the constant sequence 1 with itself, is not defined. This doesn't arise for singly infinite sequences, as these have only finite sums.

One has some pairings, for instance the product of a finite sequence with any sequence, and the product . This is related to duality of Lp spaces.

Read more about this topic:  Cauchy Product

Famous quotes containing the words relation to, relation and/or functions:

    The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to “the serious.” One can be serious about the frivolous, frivolous about the serious.
    Susan Sontag (b. 1933)

    The psychoanalysis of individual human beings, however, teaches us with quite special insistence that the god of each of them is formed in the likeness of his father, that his personal relation to God depends on his relation to his father in the flesh and oscillates and changes along with that relation, and that at bottom God is nothing other than an exalted father.
    Sigmund Freud (1856–1939)

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)