Cartesian Closed Category - Equational Theory

Equational Theory

In every cartesian closed category (using exponential notation), (XY)Z and (XZ)Y are isomorphic for all objects X, Y and Z. We write this as the "equation"

(xy)z = (xz)y.

One may ask what other such equations are valid in all cartesian closed categories. It turns out that all of them follow logically from the following axioms:

  • x×(y×z) = (x×yz
  • x×y = y×x
  • x×1 = x (here 1 denotes the terminal object of C)
  • 1x = 1
  • x1 = x
  • (x×y)z = xz×yz
  • (xy)z = x(y×z)

Bicartesian closed categories extend cartesian closed categories with binary coproducts and an initial object, with products distributing over coproducts. Their equational theory is extended with the following axioms:

  • x + y = y + x
  • (x + y) + z = x + (y + z)
  • x(y + z) = xy + xz
  • x(y + z) = xyxz
  • 0 + x = x
  • x×0 = 0
  • x0 = 1

Read more about this topic:  Cartesian Closed Category

Famous quotes containing the word theory:

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)