Cartesian Closed Category
In category theory, a category is cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.
Read more about Cartesian Closed Category: Definition, Examples, Applications, Equational Theory
Famous quotes containing the words closed and/or category:
“With two sons born eighteen months apart, I operated mainly on automatic pilot through the ceaseless activity of their early childhood. I remember opening the refrigerator late one night and finding a roll of aluminum foil next to a pair of small red tennies. Certain that I was responsible for the refrigerated shoes, I quickly closed the door and ran upstairs to make sure I had put the babies in their cribs instead of the linen closet.”
—Mary Kay Blakely (20th century)
“I see no reason for calling my work poetry except that there is no other category in which to put it.”
—Marianne Moore (18871972)