Carmichael Number - Higher-order Carmichael Numbers

Higher-order Carmichael Numbers

Carmichael numbers can be generalized using concepts of abstract algebra.

The above definition states that a composite integer n is Carmichael precisely when the nth-power-raising function pn from the ring Zn of integers modulo n to itself is the identity function. The identity is the only Zn-algebra endomorphism on Zn so we can restate the definition as asking that pn be an algebra endomorphism of Zn. As above, pn satisfies the same property whenever n is prime.

The nth-power-raising function pn is also defined on any Zn-algebra A. A theorem states that n is prime if and only if all such functions pn are algebra endomorphisms.

In-between these two conditions lies the definition of Carmichael number of order m for any positive integer m as any composite number n such that pn is an endomorphism on every Zn-algebra that can be generated as Zn-module by m elements. Carmichael numbers of order 1 are just the ordinary Carmichael numbers.

Read more about this topic:  Carmichael Number

Famous quotes containing the words carmichael and/or numbers:

    Each coming together of man and wife, even if they have been mated for many years, should be a fresh adventure; each winning should necessitate a fresh wooing.
    —Marie Carmichael Stopes (1880–1958)

    The principle of majority rule is the mildest form in which the force of numbers can be exercised. It is a pacific substitute for civil war in which the opposing armies are counted and the victory is awarded to the larger before any blood is shed. Except in the sacred tests of democracy and in the incantations of the orators, we hardly take the trouble to pretend that the rule of the majority is not at bottom a rule of force.
    Walter Lippmann (1889–1974)