Cantor Distribution - Moments

Moments

It is easy to see by symmetry that for a random variable X having this distribution, its expected value E(X) = 1/2, and that all odd central moments of X are 0.

The law of total variance can be used to find the variance var(X), as follows. For the above set C1, let Y = 0 if X ∈, and 1 if X ∈ . Then:


\begin{align}
\operatorname{var}(X) & = \operatorname{E}(\operatorname{var}(X\mid Y)) + \operatorname{var}(\operatorname{E}(X\mid Y)) \\ & = \frac{1}{9}\operatorname{var}(X) + \operatorname{var} \left\{ \begin{matrix} 1/6 & \mbox{with probability}\ 1/2 \\ 5/6 & \mbox{with probability}\ 1/2 \end{matrix} \right\} \\ & = \frac{1}{9}\operatorname{var}(X) + \frac{1}{9}
\end{align}

From this we get:

A closed-form expression for any even central moment can be found by first obtaining the even cumulants

 \kappa_{2n} = \frac{2^{2n-1} (2^{2n}-1) B_{2n}} {n\, (3^{2n}-1)}, \,\!

where B2n is the 2nth Bernoulli number, and then expressing the moments as functions of the cumulants.

Read more about this topic:  Cantor Distribution

Famous quotes containing the word moments:

    The essence of the modern state is that the universal be bound up with the complete freedom of its particular members and with private well-being, that thus the interests of family and civil society must concentrate themselves on the state.... It is only when both these moments subsist in their strength that the state can be regarded as articulated and genuinely organized.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    What moments divine, what rapture serene.
    Cole Porter (1893–1964)

    There are moments when, faced with our lack of success, I wonder whether we are failures, proud but impotent. One thing reassures me as to our value: the boredom that afflicts us. It is the hall-mark of quality in modern men.
    Edmond De Goncourt (1822–1896)