Calibrated Geometry

Calibrated Geometry

In the mathematical field of differential geometry, a calibrated manifold is a Riemannian manifold (M,g) of dimension n equipped with a differential p-form φ (for some 0 ≤ pn) which is a calibration in the sense that

  • φ is closed: dφ = 0, where d is the exterior derivative
  • for any xM and any oriented p-dimensional subspace ξ of TxM, φ|ξ = λ volξ with λ ≤ 1. Here volξ is the volume form of ξ with respect to g.

Set Gx(φ) = { ξ as above : φ|ξ = volξ }. (In order for the theory to be nontrivial, we need Gx(φ) to be nonempty.) Let G(φ) be the union of Gx(φ) for x in M.

The theory of calibrations is due to R. Harvey and B. Lawson and others (see The History of Calibrations).

Read more about Calibrated Geometry:  Calibrated Submanifolds, Examples, History of Calibrations (Geometric Measure Theory, Chapter 6, Section 6.5, Frank Morgan)

Famous quotes containing the word geometry:

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)