In mathematics, the Burnside ring of a finite group is an algebraic construction that encodes the different ways the group can act on finite sets. The ideas were introduced by William Burnside at the end of the nineteenth century, but the algebraic ring structure is a more recent development, due to Solomon (1967).
Read more about Burnside Ring: Formal Definition, Marks, Examples, Permutation Representations, Extensions
Famous quotes containing the word ring:
“What is a novel? I say: an invented story. At the same time a story which, though invented has the power to ring true. True to what? True to life as the reader knows life to be or, it may be, feels life to be. And I mean the adult, the grown-up reader. Such a reader has outgrown fairy tales, and we do not want the fantastic and the impossible. So I say to you that a novel must stand up to the adult tests of reality.”
—Elizabeth Bowen (18991973)