A Polynomial Approach To The DFT
Recall that the DFT is defined by the formula:
For convenience, let us denote the N roots of unity by ωNn (n = 0, ..., N − 1):
and define the polynomial x(z) whose coefficients are xn:
The DFT can then be understood as a reduction of this polynomial; that is, Xk is given by:
where mod denotes the polynomial remainder operation. The key to fast algorithms like Bruun's or Cooley–Tukey comes from the fact that one can perform this set of N remainder operations in recursive stages.
Read more about this topic: Bruun's FFT Algorithm
Famous quotes containing the word approach:
“The minute you try to talk business with him he takes the attitude that he is a gentleman and a scholar, and the moment you try to approach him on the level of his moral integrity he starts to talk business.”
—Raymond Chandler (18881959)