A Polynomial Approach To The DFT
Recall that the DFT is defined by the formula:
For convenience, let us denote the N roots of unity by ωNn (n = 0, ..., N − 1):
and define the polynomial x(z) whose coefficients are xn:
The DFT can then be understood as a reduction of this polynomial; that is, Xk is given by:
where mod denotes the polynomial remainder operation. The key to fast algorithms like Bruun's or Cooley–Tukey comes from the fact that one can perform this set of N remainder operations in recursive stages.
Read more about this topic: Bruun's FFT Algorithm
Famous quotes containing the word approach:
“The white man regards the universe as a gigantic machine hurtling through time and space to its final destruction: individuals in it are but tiny organisms with private lives that lead to private deaths: personal power, success and fame are the absolute measures of values, the things to live for. This outlook on life divides the universe into a host of individual little entities which cannot help being in constant conflict thereby hastening the approach of the hour of their final destruction.”
—Policy statement, 1944, of the Youth League of the African National Congress. pt. 2, ch. 4, Fatima Meer, Higher than Hope (1988)