Brouwer Fixed-point Theorem - Statement

Statement

The theorem has several formulations, depending on the context in which it is used. The simplest is sometimes given as follows:

In the plane
Every continuous function f from a closed disk to itself has at least one fixed point.

This can be generalized to an arbitrary finite dimension:

In Euclidean space
Every continuous function from a closed ball of a Euclidean space to itself has a fixed point.

A slightly more general version is as follows:

Convex compact set
Every continuous function f from a convex compact subset K of a Euclidean space to K itself has a fixed point.

An even more general form is better known under a different name:

Schauder fixed point theorem
Every continuous function from a convex compact subset K of a Banach space to K itself has a fixed point.

Read more about this topic:  Brouwer Fixed-point Theorem

Famous quotes containing the word statement:

    Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individual’s sovereignty.
    Mario Vargas Llosa (b. 1936)

    Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. “I don’t have any whisky,” may be a fact but it is not a truth.
    William Burroughs (b. 1914)

    The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.
    Nicholson Baker (b. 1957)