Brauer Group - Brauer Group and Class Field Theory

Brauer Group and Class Field Theory

The notion of Brauer group plays an important role in the modern formulation of the class field theory. If Kv is a non-archimedean local field, there is a canonical isomorphism invv: Br(Kv) → Q/Z constructed in local class field theory. An element of the Brauer group of order n can be represented by a cyclic division algebra of dimension n2.

The case of a global field K is addressed by the global class field theory. If D is a central simple algebra over K and v is a valuation then DKv is a central simple algebra over Kv, the local completion of K at v. This defines a homomorphism from the Brauer group of K into the Brauer group of Kv. A given central simple algebra D splits for all but finitely many v, so that the image of D under almost all such homomorphisms is 0. The Brauer group Br(K) fits into an exact sequence

where S is the set of all valuations of K and the right arrow is the direct sum of the local invariants and the Brauer group of the real numbers is identified with (1/2)Z/Z. The injectivity of the left arrow is the content of the Albert–Brauer–Hasse–Noether theorem. Exactness in the middle term is a deep fact from the global class field theory. The group Q/Z on the right may be interpreted as the "Brauer group" of the class formation of idele classes associated to K.

Read more about this topic:  Brauer Group

Famous quotes containing the words group, class, field and/or theory:

    The boys think they can all be athletes, and the girls think they can all be singers. That’s the way to fame and success. ...as a group blacks must give up their illusions.
    Kristin Hunter (b. 1931)

    All this class of pleasures inspires me with the same nausea as I feel at the sight of rich plum-cake or sweetmeats; I prefer the driest bread of common life.
    Sydney Smith (1771–1845)

    I see a girl dragged by the wrists
    Across a dazzling field of snow,
    And there is nothing in me that resists.
    Once it would not be so....
    Philip Larkin (1922–1986)

    The human species, according to the best theory I can form of it, is composed of two distinct races, the men who borrow and the men who lend.
    Charles Lamb (1775–1834)