Transcendental and Logarithmic Branch Points
Suppose that g is a global analytic function defined on a punctured disc around z0. Then g has a transcendental branch point if z0 is an essential singularity of g such that analytic continuation of a function element once around some simple closed curve surrounding the point z0 produces a different function element. An example of a transcendental branch point is the origin for the multi-valued function
for some integer k > 1. Here the monodromy around the origin is finite.
By contrast, the point z0 is called a logarithmic branch point if it is impossible to return to the original function element by analytic continuation along a curve with nonzero winding number about z0. This is so called because the typical example of this phenomenon is the branch point of the complex logarithm at the origin. Going once counterclockwise around a simple closed curve encircling the origin, the complex logarithm is incremented by 2πi. Encircling a loop with winding number w, the logarithm is incremented by 2πi w.
There is no corresponding notion of ramification for transcendental and logarithmic branch points since the associated covering Riemann surface cannot be analytically continued to a cover of the branch point itself. Such covers are therefore always unramified.
Read more about this topic: Branch Point
Famous quotes containing the words branch and/or points:
“True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....”
—Marcel Proust (18711922)
“Sometimes apparent resemblances of character will bring two men together and for a certain time unite them. But their mistake gradually becomes evident, and they are astonished to find themselves not only far apart, but even repelled, in some sort, at all their points of contact.”
—Sébastien-Roch Nicolas De Chamfort (17411794)