Braid Group - Actions of Braid Groups

Actions of Braid Groups

In analogy with the action of the symmetric group by permutations, in various mathematical settings there exists a natural action the braid group on n-tuples of objects or on the n-folded tensor product that involves some "twists". Consider an arbitrary group G and let X be the set of all n-tuples of elements of G whose product is the identity element of G. Then Bn acts on X in the following fashion:

 \sigma_i(x_1,\ldots,x_{i-1},x_i, x_{i+1},\ldots, x_n)=
(x_1,\ldots, x_{i-1}, x_{i+1}, x_{i+1}^{-1}x_i x_{i+1}, x_{i+2},\ldots,x_n).

Thus the elements xi and xi+1 exchange places and, in addition, xi is twisted by the inner automorphism corresponding to xi+1 — this ensures that the product of the components of x remains the identity element. It may be checked that the braid group relations are satisfied and this formula indeed defines a group action of Bn on X. As another example, a braided monoidal category is a monoidal category with a braid group action. Such structures play an important role in modern mathematical physics and lead to quantum knot invariants.

Read more about this topic:  Braid Group

Famous quotes containing the words actions, braid and/or groups:

    To be told that our child’s behavior is “normal” offers little solace when our feelings are badly hurt, or when we worry that his actions are harmful at the moment or may be injurious to his future. It does not help me as a parent nor lessen my worries when my child drives carelessly, even dangerously, if I am told that this is “normal” behavior for children of his age. I’d much prefer him to deviate from the norm and be a cautious driver!
    Bruno Bettelheim (20th century)

    As a father I had some trouble finding the words to separate the person from the deed. Usually, when one of my sons broke the rules or a window, I was too angry to speak calmly and objectively. My own solution was to express my feelings, but in an exaggerated, humorous way: “You do that again and you will be grounded so long they will call you Rip Van Winkle II,” or “If I hear that word again, I’m going to braid your tongue.”
    David Elkind (20th century)

    In America every woman has her set of girl-friends; some are cousins, the rest are gained at school. These form a permanent committee who sit on each other’s affairs, who “come out” together, marry and divorce together, and who end as those groups of bustling, heartless well-informed club-women who govern society. Against them the Couple of Ehepaar is helpless and Man in their eyes but a biological interlude.
    Cyril Connolly (1903–1974)