Free Groups Are Not Boundedly Generated
Several authors have stated in the mathematical literature that it is obvious that finitely generated free groups are not boundedly generated. This section contains various obvious and less obvious ways of proving this. Some of the methods, which touch on bounded cohomology, are important because they are geometric rather than algebraic, so can be applied to a wider class of groups, for example Gromov-hyperbolic groups.
Since for any n ≥ 2, the free group on 2 generators F2 contains the free group on n generators Fn as a subgroup of finite index (in fact n – 1), once one non-cyclic free group on finitely many generators is known to be not boundedly generated, this will be true for all of them. Similarly, since SL2(Z) contains F2 as a subgroup of index 12, it is enough to consider SL2(Z). In other words, to show that no Fn with n ≥ 2 has bounded generation, it is sufficient to prove this for one of them or even just for SL2(Z) .
Read more about this topic: Boundedly Generated Group
Famous quotes containing the words free, groups and/or generated:
“Everyone asks for freedom for himself,
The man free love, the businessman free trade,
The writer and talker free speech and free press.”
—Robert Frost (18741963)
“In America every woman has her set of girl-friends; some are cousins, the rest are gained at school. These form a permanent committee who sit on each others affairs, who come out together, marry and divorce together, and who end as those groups of bustling, heartless well-informed club-women who govern society. Against them the Couple of Ehepaar is helpless and Man in their eyes but a biological interlude.”
—Cyril Connolly (19031974)
“It is precisely the purpose of the public opinion generated by the press to make the public incapable of judging, to insinuate into it the attitude of someone irresponsible, uninformed.”
—Walter Benjamin (18921940)