Boundedly Generated Group
In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem (see Lubotzky & Segal 2003).
Read more about Boundedly Generated Group: Definitions, Properties, Examples, Free Groups Are Not Boundedly Generated
Famous quotes containing the words generated and/or group:
“Here [in London, history] ... seemed the very fabric of things, as if the city were a single growth of stone and brick, uncounted strata of message and meaning, age upon age, generated over the centuries to the dictates of some now all-but-unreadable DNA of commerce and empire.”
—William Gibson (b. 1948)
“The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, Dont do that, You will interfere with our prosperity. And when we ask: where is our prosperity lodged? a certain group of gentlemen say, With us.”
—Woodrow Wilson (18561924)