Boundedly Generated Group

Boundedly Generated Group

In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem (see Lubotzky & Segal 2003).

Read more about Boundedly Generated Group:  Definitions, Properties, Examples, Free Groups Are Not Boundedly Generated

Other articles related to "boundedly generated group, group":

Boundedly Generated Group - Free Groups Are Not Boundedly Generated - Gromov Boundary
... elements on the Gromov boundary of a Gromov-hyperbolic group ... For the special case of the free group Fn, the boundary (or space of ends) can be identified with the space X of semi-infinite reduced words g1 g2 ยทยทยท in the ... The free group acts by left multiplication on the semi-infinite words ...

Famous quotes containing the words group and/or generated:

    Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.
    Jean Dubuffet (1901–1985)

    Here [in London, history] ... seemed the very fabric of things, as if the city were a single growth of stone and brick, uncounted strata of message and meaning, age upon age, generated over the centuries to the dictates of some now all-but-unreadable DNA of commerce and empire.
    William Gibson (b. 1948)