Equivalence of Boundedness and Continuity
As stated in the introduction, a linear operator L between normed spaces X and Y is bounded if and only if it is a continuous linear operator. The proof is as follows.
- Suppose that L is bounded. Then, for all vectors v and h in X with h nonzero we have
-
- Letting go to zero shows that L is continuous at v. Moreover, since the constant M does not depend on v, this shows that in fact L is uniformly continuous (Even stronger, it is Lipschitz continuous.)
- Conversely, it follows from the continuity at the zero vector that there exists a such that for all vectors h in X with . Thus, for all non-zero in X, one has
-
- This proves that L is bounded.
Read more about this topic: Bounded Operator
Famous quotes containing the word continuity:
“Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.”
—Erik H. Erikson (19041994)
Related Subjects
Related Phrases
Related Words