Bounded Operator - Equivalence of Boundedness and Continuity

Equivalence of Boundedness and Continuity

As stated in the introduction, a linear operator L between normed spaces X and Y is bounded if and only if it is a continuous linear operator. The proof is as follows.

  • Suppose that L is bounded. Then, for all vectors v and h in X with h nonzero we have
Letting go to zero shows that L is continuous at v. Moreover, since the constant M does not depend on v, this shows that in fact L is uniformly continuous (Even stronger, it is Lipschitz continuous.)
  • Conversely, it follows from the continuity at the zero vector that there exists a such that for all vectors h in X with . Thus, for all non-zero in X, one has
This proves that L is bounded.

Read more about this topic:  Bounded Operator

Famous quotes containing the word continuity:

    Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.
    Erik H. Erikson (1904–1994)